Abstract

In the present paper, different types of metal doped ceria CeO2-MOx (M = Sc, Y, Dy, Zr and Hf) with fluorite structures have been prepared with a complex polymerization method. The O2-releasing potential of prepared samples was evaluated at 1773 K for two-step water splitting process. The partially oxygen defected CeO2-MO1.5 mixed oxides (M = Sc3+, Y3+ and Dy3+) exhibited an enhancement of the O2 evolution due to the crystal-chemical effect that cation with smaller ionic radius (Sc3+, Y3+ and Dy3+) mitigate the volume expansion of crystal lattice resulted in the reduction of Ce4+ with smaller ionic radius into Ce3+ with larger ionic radius. The CeO2-MO2 (M = Zr4+ and Hf4+) produced larger amount of O2 than that for CeO2-MO1.5 mixed oxides, since CeO2-MO2 has no oxygen vacancy. While the ionic radii of Zr4+ and Hf4+ are almost equal, the higher O2-releasing reactivity of Ce0.9Hf0.1O2 than that of Ce0.9Zr0.1O2 is explained in terms of ionicity of M-O bond. Thus, it was found that both ionic radius and ionicity play important role in the O2-releasing reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.