Abstract
This paper reports the computed O2 binding to heme, which for the first time explains experimental enthalpies for this process of central importance to bioinorganic chemistry. All four spin states along the relaxed Fe-O2-binding curves were optimized using the full heme system with dispersion, thermodynamic, and scalar-relativistic corrections, applying several density functionals. When including all these physical terms, the experimental enthalpy of O2 binding (-59 kJ mol(-1)) is closely reproduced by TPSSh-D3 (-66 kJ mol(-1)). Dispersion changes the potential energy surfaces and leads to the correct electronic singlet and heptet states for bound and dissociated O2. The experimental activation enthalpy of dissociation (~82 kJ mol(-1)) was also accurately computed (~75 kJ mol(-1)) with an actual barrier height of ~60 kJ mol(-1) plus a vibrational component of ~10 and ~5 kJ mol(-1) due to the spin-forbidden nature of the process, explaining the experimentally observed difference of ~20 kJ mol(-1) in enthalpies of binding and activation. Most importantly, the work shows how the nearly degenerate singlet and triplet states increase crossover probability up to ~0.5 and accelerate binding by ~100 times, explaining why the spin-forbidden binding of O2 to heme, so fundamental to higher life forms, is fast and reversible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.