Abstract

Rate constants for the removal of O2(b1Σg+) by collisions with O2, N2, CO2, and H2O have been determined over the temperature range from 297 to 800 K. O2(b1Σg+) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b1Σg+-X3Σg- fluorescence. The removal rate constants for CO2, N2, and H2O were not strongly dependent on temperature and could be represented by the expressions kCO2 = (1.18 ± 0.05) × 10-17 × T1.5 × exp[Formula: see text], kN2 = (8 ± 0.3) × 10-20 × T1.5 × exp[Formula: see text], and kH2O = (1.27 ± 0.08) × 10-16 × T1.5 × exp[Formula: see text] cm3 molecule-1 s-1. Rate constants for O2(b1Σg+) removal by O2(X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression kO2 = (7.4 ± 0.8) × 10-17 × T0.5 × exp[Formula: see text] cm3 molecule-1 s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call