Abstract

The effects of radio-frequency electric and strain fields on the depinning and sliding of a charge density wave in the quasi-one-dimensional conductor TaS3 have been compared. The amplitude dependence of the threshold voltage Vt (zeroth Shapiro step) has been studied for both fields. The threshold voltage Vt decreases with increasing radio-frequency electric field Erf at increasing rate |dVt/dErf|, whereas with increasing strain field, the decrease in the threshold voltage Vt is saturated, approaching a constant value. This result indicates a qualitative difference between the mechanisms of influence of the electric and strain fields on the dynamics of the charge density wave and is explained by the modulation of the sliding velocity of the charge density wave and pinning potential in the former and latter cases, respectively. In practice, the result allows one to distinguish the mechanical impact on the dynamics of the charge density wave from the influence of electrical interference at the same frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.