Abstract

O-linked β- N -acetylglucosamine modification O-GlcNAcylation) is a post-translational modification of intracellular proteins, serving as a nutrient sensor. Growing evidence has demonstrated its physiological and pathological importance in various mammalian tissues. This study examined the physiological role of O-GlcNAcylation in podocyte function and development. O-GlcNAc transferase (Ogt) is a critical enzyme for O-GlcNAcylation and resides on the X chromosome. To abrogate O-GlcNAcylation in podocytes, we generated congenital and tamoxifen (TM)-inducible podocyte-specific Ogt knockout mice (Podo-Ogt y/- and TM-Podo-Ogt y/- , respectively) and analyzed their renal phenotypes. Podo-Ogt y/- mice showed normal podocyte morphology at birth. However, they developed albuminuria at 8 weeks of age, increasing progressively until age 32 weeks. Glomerular sclerosis, proteinuria-related tubulointerstitial lesions and markedly altered podocyte foot processes, with decreased podocin expression, were observed histologically in 32-week-old Podo-Ogt y/- mice. Next, we induced adult-onset deletion of the Ogt gene in podocytes by TM injection in 8-week-old TM-Podo-Ogt y/- mice. In contrast to Podo-Ogt y/- mice, the induced TM-Podo-Ogt y/- mice did not develop albuminuria or podocyte damage, suggesting a need for O-GlcNAcylation to form mature foot processes after birth. To test this possibility, 3-week-old Podo-Ogt y/- mice were treated with Bis-T-23, which stimulates actin-dependent dynamin oligomerization, actin polymerization and subsequent foot process elongation in podocytes. Albuminuria and podocyte damage in 16-week-old Podo-Ogt y/- mice were prevented by Bis-T-23 treatment. O-GlcNAcylation is necessary for maturation of podocyte foot processes, particularly after birth. Our study provided new insights into podocyte biology and O-GlcNAcylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.