Abstract

Abstract1,3‐Dipoles are commonly used in [3+2] cycloadditions, whereas isoelectronic uncharged dipole variants remain underdeveloped. In contrast to conventional 1,3‐dipoles, uncharged dipole equivalents form zwitterionic cycloadducts, which can be exploited to build further molecular complexity. In this work, the first cycloadditions of oxygen‐substituted isocyanates (O‐isocyanates) were studied experimentally and by DFT calculations. This unique cycloaddition strategy provides access to a novel class of heterocycle aza‐oxonium ylides through intramolecular and intermolecular cycloadditions with alkenes. This allowed a systematic study of the reactivity of the transient aza‐oxonium ylide intermediate, which can undergo N−O bond cleavage followed by nitrene C−H insertion, and the formation of β‐lactams or isoxazolidinones upon varying the structure of the alkene or O‐isocyanate reagents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.