Abstract

The initiation of mucin-type O-glycosylation is catalysed by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (EC 2.4.1.41). These enzymes are responsible for the transfer of N-acetylgalactosamine from the nucleotide sugar donor, UDP-GalNAc, to the hydroxyl group on specific serine or threonine residues in acceptor proteins. By screening a Toxoplasma gondii cDNA library, three distinct isoforms of the ppGalNAc-T gene family were cloned. Two additional isoforms were identified and partially cloned following analysis of the T. gondii genome sequence database. All of the cloned and identified ppGalNAc-T's are type II membrane proteins that share up to 50% amino acid sequence identity within the conserved catalytic domain. They each contain an N-terminal cytoplasmic domain, a hydrophobic transmembrane domain, and a lumenal domain; the latter consists of stem, catalytic, and lectin-like domains. Moreover, each of this ppGalNAc-T's contains important sequence motifs that are typical for this class of glycosyltransferases. These include a glycosyltransferase 1 motif containing the DXH sequence, a Gal/GalNAc-T motif, and the CLD and QXW sequence motifs located in α-, β-, and γ-repeats present within the lectin-like domain. The coding regions of T. gondii ppGalNAc-T1, -T2, and -T3 reside in multiple exons ranging in number from 6 to 10. Our results demonstrate that mucin-type O-glycosylation in T. gondii is catalysed by a multimember gene family, which is evolutionarily conserved from single-celled eukaryotes through nematodes and insects up to mammals. Taken together, this information creates the basis for future studies of the function of the ppGalNAc-T gene family in the pathobiology of this apicomplexan parasite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call