Abstract

BackgroundHepatitis B virus (HBV), which causes hepatitis, liver cirrhosis, and hepatocellular carcinoma, is a global human health problem. HBV contains three envelope proteins, S-, M-, and L-hepatitis B surface antigen (HBsAg). We recently found that O-glycosylated M-HBsAg, reactive with jacalin lectin, is one of the primary components of HBV DNA-containing virus particles. Thus, we aimed to analyze and target the glycosylation of HBsAg. MethodsHBsAg prepared from the serum of Japanese patients with HBV were analyzed using mass spectrometry. The glycopeptide modified with O-glycan was generated and used for immunization. The specificity of the generated antibody and the HBV infection inhibition activity was examined. ResultsMass spectrometry analysis revealed that T37 and/or T38 on M-HBsAg of genotype C were modulated by ±NeuAc(α2,3)Gal(β1,3)GalNAc. Chemically and enzymatically synthesized O-glycosylated peptide (Glyco-PS2) induced antibodies that recognize mainly PreS2 in M-HBsAg not in L-HBsAg, whereas the non-glycosylated peptide (PS2) induced antisera recognizing L-HBsAg but not O-glycosylated M-HBsAg. The removal of O-glycan from M-HBsAg partly decreased the reactivity of the Glyco-PS2 antibody, suggesting that peptide part was also recognized by the antibody. The antibody further demonstrated the inhibition of HBV infection in human hepatic cells in vitro. ConclusionsGlycosylation of HBsAg occurs differently in different HBsAgs in a site-specific manner. The new Glyco-PS2 antibody, recognizing O-glycosylated M-HBsAg of genotype C, could inhibit HBV infection. General significanceThe detailed analysis of HBsAg identified different glycosylations of HBV surface. The glycosylated peptide based on mass spectrometry analysis showed higher potential to induce functional antibody against HBV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call