Abstract

Multiwavelength Brillouin-Raman fiber laser (MBRFL) features broadband multiwavelength generation with flat-amplitude and high optical signal to noise ratio (OSNR), which has great potential in optical fiber communication applications. Till now, the spectral regions of MBRFLs are mostly concentrated at conventional C- and L-band and the tunability of MBRFL is limited by using the Raman pump with fixed wavelength. Here, by utilizing wavelength-agile random fiber laser which can emit tunable lasing at 1.2 µm band as the Raman pump, we experimentally demonstrate the tunable MBRFL in the O-band for the first time, to the best of our knowledge. At Raman and Brillouin pump powers of 920 mW and -3 dBm, respectively, up to 90 Stokes lines with 0.13 nm wavelength spacing and >13 dB OSNR can be obtained when the Raman and Brillouin pump wavelength are set at 1231 nm and 1300 nm, respectively. Moreover, by tuning the wavelength of Brillouin pump from 1295 nm to 1330 nm, tunable MBRFL can be achieved with similar multiwavelength generation bandwidth by simultaneously tuning the Raman pump wavelength, and the number of Stokes lines are beyond 85 across the tuning range. The bandwidth of the demonstrated O-band MBRFL is also the widest wavelength span ever reported for multiwavelength Brillouin fiber lasers at 1.3 µm band. Our work indicates that the use of wavelength-agile random fiber laser as Raman pump in MBRFL can provide an effective way to extend the spectral regions of MBRFL and also improve the tunability performance of MBRFL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call