Abstract

THE ESTUARINE ENVIRONMENT AND pH VARIATION: NATURAL LIMTS AND EXPERIMENTAL OBSERVATION OF THE ACIDIFICATION EFFECT ON PHOSPHORUS BIOAVAILABILITY. This study shows the variation of pH in the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC). Data from 3 years (2019, 2021, 2022) were obtained in 17 points presenting the following ranges: temperature (14.88-27.05 ºC), pH (7.16-8.40) and DIP (0.20-11.28 µmol L-1) along a saline gradient (0.05-32.09) under different hydrodynamics, biogeochemical processes and anthropogenic influence. The pH buffering capacity due to the presence of weak acid salts in saline water (S ≥ 30) was associated to the lowest DIP, decreasing with low salinity values, confirming the direct correlation among salinity and pH. The highest temperatures in the winter of 2021, corroborated with the abnormal climate event in that year. An in vitro experiment showed results of the interaction of PID and sediments with different textures, with and without the presence of the benthic microbiota under a considerable decreasing of the pH (acidification) in relation to the natural condition of this environment. The P sediment flux characterized Iguape sector as a P sink with or without biota, Ararapira sector as a P source with biota and Cananéia, as P source without biota. The salt water buffered the pH and sediment buffered DIP both associated to the biogeochemical and hydrodynamic processes contribute to the homeostasis in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.