Abstract

Bifidobacterium bifidum possesses two extracellular sialidases (SiaBb1 and SiaBb2) that release free sialic acid from mucin sialoglycans, which can be utilized via cross-feeding by Bifidobacterium breve that, otherwise, is prevented from utilizing this nutrient source. Modification of sialic acids with O-acetyl esters is known to protect mucin glycans from degradation by bacterial sialidases. Compared to SiaBb2, SiaBb1 has an additional O-acetylesterase (Est) domain. We aimed to elucidate the role of the SiaBb1 Est domain from B. bifidum in sialic acid cross-feeding within Bifidobacterium. Pre-treatment of mucin secreted from bovine submaxillary glands (BSM) using His6 -tagged-Est and -SiaBb2 released a higher amount of sialic acid compared to the pre-treatment by His6 -SiaBb2. Growth of B. breve increased with an increase in nanE expression when supplemented with both His6 -Est- and His6 -SiaBb2-treated BSM. These results indicate that the esterase activity of the SiaBb1 Est domain enhances the efficiency of SiaBb2 to cleave sialic acid from mucin. This free sialic acid can be utilized by coexisting sialic acid scavenging B. breve via cross-feeding. Here, we provide the molecular mechanism underlying the unique sialoglycan degradation property of B. bifidum which is mediated by the complementary activities of SiaBb1 and SiaBb2 in the context of sialic acid cross-feeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.