Abstract

-The localization of 5-HT-moduline, an endogenous cerebral tetrapeptide (LSAL) which specifically interacts with 5-HT1B receptors (Rousselle et al., 1996; Massot et al., 1996) was examined in mouse brain using an immunocytochemistry technique with a polyclonal anti-peptide antibody highly specific for this tetrapeptide. Highest levels of 5-HT-moduline immunoreactivity were observed in the cerebral cortex including cingulate, retrosplenial, parietal and pyriform cortical areas and in the basal ganglia. Intense immunoreactivity also occurred in the hippocampus, subiculum, various hypothalamic and thalamic nuclei and in some midbrain regions such as the substantia nigra and the superior colliculi. Immunoreactive neurons generally showed intense and extensive labelling of the perikarya and dendritic arborizations with moderate to heavy characteristic deposits of reaction product along plasma membranes and within cytoplasm while the nuclei were devoid of reaction product. The results obtained indicated that 5-HT-moduline immunoreactivity was heterogenously distributed in neuronal structures of mouse brain. The distribution of 5-HT-moduline immunoreactivity closely correlated with that of 5-HT-moduline specific binding sites as visualized by autoradiography (Massot et al., 1996). Moreover, it seems to overlap with the distribution of serotonergic innervation and also with that of 5-HT1B receptors in mouse brain (Boschert et al., 1994; Bruinvels et al., 1994; Chopin et al., 1994; Langlois et al., 1995). These data provide evidence that 5-HT-moduline immunoreactivity is located in cells with the morphological appearance of neurones. Its localization in brain areas which also contain 5-HT1B receptors, is in good agreement with previous demonstrations that this peptide specifically interacts with 5-HT1B receptors to regulate their functional activity and accordingly controls the modulatory activity of the serotoninergic system on various CNS functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.