Abstract

We study the restoration of spontaneously broken symmetry at nonzero temperature in the framework of the O(2) model using polar coordinates. We apply the CJT formalism to calculate the masses and the condensate in the double-bubble approximation, both with and without a term that explicitly breaks the O(2) symmetry. We find that, in the case with explicitly broken symmetry, the mass of the angular degree of freedom becomes tachyonic above a temperature of about 300 MeV. Taking the term that explicitly breaks the symmetry to be infinitesimally small, we find that the Goldstone theorem is respected below the critical temperature. However, this limit cannot be performed for temperatures above the phase transition. We find that, no matter whether we break the symmetry explicitly or not, there is no region of temperature in which the radial and the angular degree of freedom become degenerate in mass. These results hold also when the mass of the radial mode is sent to infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.