Abstract

Tris (2-chloroethyl) phosphate (TCEP) is a newly developed organophosphorus flame retardant that has been increasingly detected in soil as a contaminant. Nanoremediation is a potential solution for the control of TCEP, while the effectiveness and ecological risks are poorly understood. Here, we investigated the physicochemical interactions and joint toxicity of nano zero-valent iron (nZVI) (50–5000 mg/kg) and TCEP (50–5000 μg/kg) at environmental relevant concentrations to earthworms (Eisenia fetida) in soil. During a 28-d exposure, TCEP in soil was neither self-degraded nor removed by nZVI, and the individual toxicity of TCEP on the physiology of earthworms was significantly higher than that of nZVI. Notably, nZVI was found to synergize the toxicity of TCEP to earthworms without showing the classical “Trojan horse effect”. Mechanically, TCEP mainly induced a typical neurotoxicity, and indirectly inhibited the food ingestion and growth performance of earthworms; nZVI induced iron poisoning aggravated the intestinal damage and directly inhibited the energy metabolism, therefore exacerbated the TCEP-induced malnutrition. Our findings provide new insights into the toxic mechanisms of nZVI-TCEP co-exposure to soil organisms, and emphasize the necessity of risk assessment and cautious usage of nanoremediation in newly emerged contaminations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call