Abstract

A rapid and sensitive protein determination method that uses electromembrane extraction (EME) and is coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) is developed. A flat nylon membrane is used to collect proteins from an aqueous solution and is directly analyzed by MALDI/MS after the addition of the MALDI matrix. Insulin is used as a model protein to investigate the optimum extraction of the parameters. The optimum EME conditions are obtained at 12 V of voltage, 10 min of extraction time, 12 mL sample volume, and 400 rpm agitation rate. The linear dynamic range (LDR) of insulin in an aqueous solution is in the range of 1.0–100.0 nM. The limit of detection (LOD) for insulin in an aqueous solution is 0.3 nM with 103-fold signal-to-noise (S/N) ratio enhancement. Furthermore, the applicability of this method to determine insulin in complicated sample matrices is also investigated. The LDR of insulin in human urine samples is in the range of 5.0–100.0 nM, and the LOD of insulin in urine samples is calculated to be 1.5 nM. The precision and accuracy of this method are evaluated at three different concentration levels, and the coefficient of variation (CV) and relative error are less than 6%. This approach is time-efficient and economical, as the flat membrane mode of EME coupled with MALDI/MS is suitable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call