Abstract

The nylon 66/nano-CaCO3 composites were prepared by melt blending on a twin-screw extruder. Scanning electron microscopy (SEM), polarized light microscopy (PLM), thermal loss (TGA) and differential scanning calorimetry (DSC) The effects of nanometer calcium carbonate on the polycrystalline behavior and thermal properties of nylon 66/nano CaCO3 composites were investigated. The results show that the nanometer calcium carbonate particles are dispersed in the nylon 66 matrix and exist in the form of aggregates. The nanometer calcium carbonate has the effect of heterogeneous nucleation, which can reduce the size of the spherules. The decomposition temperature of the nylon 66 is 400 ℃, the addition of nano-CaCO3 to reduce the decomposition temperature. At the same time, DSC test showed that the β-crystalline form in the material reduced the melting temperature of the material. The addition of nano-CaCO3 in the nylon 66 matrix resulted in the decrease of the crystallization temperature and the increase of the half-height width of the endothermic peak. The lower the crystallization temperature, the wider the crystallization temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.