Abstract

The deformation zone of fractured nylon-6/ethylene-propylene rubber specimens was studied using scanning electron microscopy (SEM). In this deformation zone three distinct layers were observed. In the main part of the stress-whitened zone only cavitation was visible. From 150-5 μm below the fracture surface, massive plastic deformation was observed. Directly under the fracture surface there was a layer about 3-5 μm thick where no cavitation or deformation was visible. This zone without cavitation was only visible when the specimen was fractured at high deformation rates. It is proposed that this top layer consists of material which was molten during fast crack propagation under adiabatic conditions. This hypothesis has been confirmed by model calculations and experiments

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.