Abstract

Nylon 6 electrospun nanofibers mat was prepared via electrospinning for the removal of three estrogens, namely, diethylstilbestrol (DES), dienestrol (DS), and hexestrol (HEX) from aqueous solution. Static adsorption as well as the dynamic adsorption was evaluated by means of batch and dynamic disk flow mode, respectively. The kinetic study indicated that the adsorption of the target compounds could be well fitted by the pseudo-second-order equation, suggesting the intra-particle/membrane diffusion process as the rate-limiting step of the adsorption process. The adsorption equilibrium data were all fitted well to the Freundlich isotherm models, with a maximum adsorption capacity values in the range of 97.71 to 208.95 mg/g, which can be compared to or moderately higher than other sorbents published in the literatures. The dynamic disk mode studies indicated that the mean removal yields of three model estrogens were over 95% with a notable smaller amount of adsorbent (4 mg). Thermodynamic study revealed that the adsorption process was exothermic and spontaneous in nature. Desorption results showed that the adsorption capacity can remain up to 80% after seven times usage. It was suggested that Nylon 6 electrospun nanofibers mat has great potential as a novel effective sorbent material for estrogens removal.

Highlights

  • Synthetic estrogens are some of the most potent endocrine-disrupting chemicals (EDCs) found in municipal wastewater, despite of low concentration [1]

  • The results indicated that the adsorption capacity of the three estrogens increased with an increase in adsorption time until equilibrium was reached between the adsorbents and estrogens solution

  • The results indicated that the adsorption kinetics of three estrogens adsorbed onto the Nylon 6 nanofiber mat closely followed the pseudo-second-order kinetic model (Figure 3a) rather than the pseudo-first-order kinetic model (Figure 3b), suggesting that intra-particle/ membrane diffusion process was the rate-controlling step of the adsorption process [23]

Read more

Summary

Introduction

Synthetic estrogens are some of the most potent endocrine-disrupting chemicals (EDCs) found in municipal wastewater, despite of low concentration (ng/L) [1]. Given pervasive contamination and the highly toxic nature of synthetic estrogens, there is considerable interest in the development of techniques to remove these compounds from contaminated water. Since these compounds are hydrophobic compounds of low volatility, adsorption plays an important role in their removal [2,3,4]. Several kinds of materials have been used as adsorbent for estrogens, such as carbon nanomaterials [5], activated charcoal [6,7], fullerene-. To our knowledge, no reports using electrospun nanofibers as adsorbent for the removal of estrogens have appeared up to now

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.