Abstract

Nuclear RNA export factors (NXF) are conserved in all metazoans and are deemed essential for shuttling RNA across the nuclear envelope and other post-transcriptional processes (such as mRNA metabolism, storage and stability). Disruption of human NXF5 has been implicated in intellectual and psychosocial disabilities. In the present report, we use recently described Nxf7 knockout (KO) mice as an experimental model to analyze in detail the behavioral consequences of clinical NXF5 deficiency. We examined male Nxf7 KO mice using an extended cognitive and behavioral test battery, and recorded extracellular field potentials in the hippocampal CA1 region. We observed various cognitive and behavioral changes including alterations in social exploration, impaired spatial learning and spatio-cognitive abilities. We also defined a new experimental paradigm to discriminate search strategies in Morris water maze and showed significant differences between Nxf7 KO and control animals. Furthermore, while we observed no difference in a nose poke suppression in an conditioned emotional response (CER) protocol, Nxf7 KO mice were impaired in discriminating between differentially reinforced cues in an auditory fear conditioning protocol. This distinct neurocognitive phenotype was accompanied by impaired hippocampal Long-term potentiation (LTP), while long-term depression (LTD) was not affected by Nxf7 deficiency. Our data demonstrate that disruption of murine Nxf7 leads to behavioral phenotypes that may relate to the intellectual and social deficits in patients with NXF5 deficiency.

Highlights

  • Post-transcriptional processes governing transcription, transport and metabolism of neuronal mRNAs are key regulators of dendritic translation, and of synaptic plasticity and cognitive functions

  • Nxf7 KO Mice Show Increased Social, but Normal Emotional Exploration In open field exploration, no genotype differences were found in path length (Figure 2A), emotionality-related exploration patterns such as path length in the center (11.0 ± 1.0 m and 9.8 ± 1.0 m, for WT and Nxf7 KO, respectively), thigmotaxis (396 ± 15 s and 416 ± 19 s, for WT and Nxf7 KO, respectively), or time spent in center (Figures 2B,C)

  • The presence of two female unknown mice induced social approach behavior and it was sooner and more pronounced in Nxf7 KO mice compared to WT

Read more

Summary

Introduction

Post-transcriptional processes governing transcription, transport and metabolism of neuronal mRNAs are key regulators of dendritic translation, and of synaptic plasticity and cognitive functions. These processes involve a complex system of RNA binding proteins (RBPs) and non-coding RNAs ensuring proper translation activation or suppression with spatial and temporal specificity and precision (Thomas et al, 2014). Nuclear RNA Export Factor (NXF) proteins interact with RBPs (Braun et al, 1999; Kang et al, 1999; Bachi et al, 2000), and play an essential role in post-transcriptional processes such as shuttling mRNA across the nuclear envelope (Izaurralde, 2002a,b, 2004), cytoplasmic mRNA trafficking (Takano et al, 2007), and mRNA stabilization (Zhang et al, 2007; Katahira et al, 2008). NXF5 was shown to bind non- to RNA, but failed to display RNA nuclear export activity like other NXF proteins (Bachi et al, 2000; Yang et al, 2001)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call