Abstract

In this note, we derive an inequality for the renewal process. Then, using this inequality, together with an identity in terms of the renewal process for the tails of random sums, we prove that a class of random sums is always new worse than used (NWU). Thus, the well-known NWU property of geometric sums is extended to the class of random sums. This class is illustrated by some examples, including geometric sums, mixed geometric sums, certain mixed Poisson distributions and certain negative binomial sums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.