Abstract

The reproductive ground plan hypothesis (RGPH) proposes that the ovarian cycle in solitary insects provides the basis for social evolution, so similar mechanisms are predicted to influence reproductive plasticity in social and solitary species. Specifically, reproductive plasticity in social species originated via modification of nutrition-dependent fertility response to juvenile hormone (JH) in solitary insects. Testing this prediction requires information about the factors that influence fertility in non-social relatives of the eusocial hymenoptera. However, no previous studies have examined how JH or nutritional condition influence fertility in Eumenines, the non-social group most closely related to social wasps. Here, we find support for the RGPH, as JH increases Euodynerus foraminatus fertility. Fertility is also condition-dependent, as heavy E. foraminatus are more fertile than light E. foraminatus. In addition, we measure the factors associated with mating success in E. foraminatus, finding that multiple factors influence mating success, including male weight, male mating experience, and female age. There is also higher variance in male than female reproductive success, suggesting that males may experience substantial sexual selection in this species. Overall, the relationships between JH, body weight, and fertility in E. foraminatus support the RGPH for the origin of sociality by demonstrating that there are strong parallels in the mechanisms that mediate fertility of social and non-social wasps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call