Abstract

Using the rat as an experimental animal model we have found that prothrombin synthesis reaches its maximal level at a relatively low dietary vitamin K intake. At still higher vitamin K intakes, however, the urinary Gla-excretion was substantially increased, showing a different vitamin K requirement for liver and extrahepatic tissues. The increased urinary Gla-excretion was found for both phylloquinone and menaquinone-4, but not for menaquinone-8, which questions the bioavailability of higher menaquinones for extrahepatic tissues. A discrepancy was found between effects of nutritional vitamin K-deficiency and treatment with a vitamin K-antagonist (brodifacoum). With both regimens plasma prothrombin rapidly decreased to well below 10% of the starting values, but in case of K-deficiency urinary Gla had hardly decreased in 7 days, whereas after 3 days of brodifacoum treatment Gla-excretion had decreased to 17% of the starting values. An explanation for this observation is that prothrombin procoagulant activity does not decrease proportional to the prothrombin Gla-content, but that a wide range of undercarboxylated prothrombins have lost nearly all activity. During vitamin K-deficiency the remaining low levels of vitamin K would mainly give rise to undercarboxylated prothrombin, whereas during brodifacoum treatment only non-carboxylated prothrombin is formed. It seems plausible that in the latter case the urinary Gla originates from proteins with long half-life times, such as the bone Gla-proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call