Abstract
Prolonged exposure to aluminum through occupational hazards or food/water intake has been linked to the occurrence of Alzheimer’s disease (AD). This study aimed at investigating the neuroprotective effects of Gallic Acid (GA) against aluminum-chloride induced AD in adult Wistar rats. Twenty eight (28) adult Wistar rats were divided into four groups (n = 7). Group A received normal saline as placebo; Group B received 200 mg/kg bw of AlCl3 only; Group C received 100 mg/kg bw of GA only and group D received 100 mg/kg bw of GA and 200 mg/kg bw of AlCl3. At the end of the 60 days experiment, blood samples were collected to obtain serum for analysis and the brain was harvested. Neurobehavioural tests (Morris Water maze, Y-Maze), neurotransmitter levels, oxidative stress markers, serum electrolytes, antioxidant enzymes and histological assessment were carried out. There was a significant decrease in antioxidant enzymes (CAT, GSH and SOD), serum electrolyte (except K+) and neurotransmitter levels (except norepinephrine) with corresponding increase in stress markers (MDA, H2O2 and NO) among group B compared to control but was restored nearly to normal after GA administration. Neurobehavioral tests showed decreased spatial memory impairment and learning deficit in group B compared to control but was ameliorated with GA administration. Histological observation showed neurofibrillary tangles and amyloid plaques in the external granular layer of group B but protected by GA administration. Nutritional supplementation of GA preserve the morphological and physiological integrity of the hippocampus against environmental neurotoxins (AlCl3) by mopping up free radicals associated with oxidative stress induced AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.