Abstract

Tissue-nonspecific alkaline phosphatase (ALPL) and alpha-amylase (AMY) are essential in the immune and digestive systems, respectively. Microplastics (MPs) pose a risk to zooplankton which may be in a state of feeding, starvation, or subsequent refeeding. However, molecular characterization of both enzymes and the regulated mechanisms affected by nutritional statuses and MPs remain unclear in zooplankton. In the present study, four full-length genes encoding ALPL and two genes encoding AMY were cloned and characterized from an isolated marine rotifer, Brachionus rotundiformis, including alplA, alplB, alplC, alplD, amy2a, and amy2al. AMY activity and expression of amy2a and amy2al were reduced by starvation and recovered after refeeding compared with feeding. ALPL activity remained unchanged among different statuses, while alplA, alplB and alplD were down-regulated by starvation and refeeding compared with feeding. ALPL activity was not affected by exposure to 10, 100 and 1000 μg/L MPs in rotifers subjected to feeding, starvation and refeeding, whereas AMY activity was significantly enhanced by 1000 μg/L MPs in rotifers subjected to refeeding. Gene expression of the tested genes, except amy2a, was significantly responsive to MPs, especially in the feeding rotifers, depending on MPs concentrations and nutritional statuses. Two-way ANOVA confirmed that these changes were strongly associated with the interaction between MPs concentrations and nutritional statuses. The present study is the first to demonstrate a nutritional status-dependent impact of MPs on immune and digestive responses, and provides more sensitive molecular biomarkers for assessing MPs toxicity using the species as model animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call