Abstract

Optimal growth conditions have been established for production of heat-labile enterotoxin (LT) by both porcine and human strains of enterotoxigenic (ENT(+)) Escherichia coli. There were no unusual growth factor requirements, and some strains produced fairly high levels of LT in a basal salts medium containing 0.5% glucose if the pH was carefully controlled. Several amino acids markedly stimulated LT synthesis when added to the basal salts-glucose medium. Methionine and lysine were the most stimulatory for both human and porcine strains. Either aspartic acid or glutamic acid further enhanced LT synthesis in the presence of methionine and lysine, with aspartic acid being more stimulatory for porcine strains and glutamic acid more stimulatory for human strains. There were no apparent vitamin requirements and no unusual cations needed for toxin synthesis except that Fe(3+) was slightly stimulatory for porcine strains. The stimulation by Fe(3+) was observed only in the presence of the three amino acids, suggesting that the effect was indirect rather than on toxin synthesis. The carbon source also influenced the yield of LT. Glucose supported maximal synthesis, but other carbon sources which exhibit a high degree of catabolite repression also supported high levels of synthesis. Little or no LT was released below pH 7.0; therefore, because the pH drops during growth from 7.5 to 6.8, even in highly buffered media, it was necessary to adjust the pH to 8.0 to effect complete release of cell-associated toxin. The defined medium containing three amino acids reduced the amount of UV-absorbing material in culture supernatants about fivefold and increased LT activity for various strains from two- to fivefold over a complex Casamino Acids-yeast extract medium. Conditions found to be optimal for synthesis of LT were inhibitory for the heat-stable enterotoxin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.