Abstract

Preferential cell wall synthesis in Micrococcus lysodeikticus, as determined by an increase in the dry weight of the cell wall, took place in a medium containing DL-glutamic acid, DL-alanine, L-lysine, glycine, magnesium ions, glucose and phosphate buffer, pH 7.0. Cell wall synthesis could not be completely dissociated from protein synthesis in the 'cell wall' medium. The cell wall synthesized in the defined medium accounted for 40–56% of the total dry weight increase of the cells. Chloramphenicol had no effect on cell wall synthesis. Incorporation of uracil and guanine in the medium did not result in any increase in the amount of cell wall synthesized. DL-Glutamic acid alone, or a mixture of the three amino acids DL-alanine, L-lysine, and glycine, were capable of replacing the four amino acids present in the complete medium, but under these conditions the total dry weight of cell wall synthesized was only 75% of that produced in the complete medium. There was no reduction in cell wall synthesis when L-glutamic acid replaced DL-glutamic acid, L-alanine replaced DL-alanine, or sucrose replaced glucose in the cell wall medium. Deprivation of magnesium ions produced the greatest decrease in wall synthesis; this was the most important single factor involved in cell wall synthesis which was studied in the present investigation. There was no observable change in the chemical composition of the cell wall synthesized in the 'wall' medium when compared to that synthesized by cells grown in a complex medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.