Abstract

Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.