Abstract

Exposure of dark grown resting Euglena to ethanol produced a transient increase in the specific activity of the glyoxysomal enzyme malate synthase. Enzyme specific activity increased during the first 24 hours of ethanol treatment and then declined. Light exposure or malate addition failed to increase enzyme specific activity. The increase and decrease in enzyme specific activity represented changes in the amount of active enzyme. In both wild type cells and the plastidless mutant W(3)BUL, enzyme levels were always higher in the dark than in the light.The specific activity of the peroxisomal enzyme glycolate dehydrogenase began to increase 24 hours after dark grown resting Euglena were exposed to light. Ethanol, but not malate, prevented the increase and promoted a decrease in glycolate dehydrogenase levels. Cycloheximide produced a decline in enzyme levels similar to the decline produced by ethanol addition. Glycolate dehydrogenase was present in the plastidless mutant W(3)BUL indicating that it is coded in the nucleus and synthesized on cytoplasmic ribosomes. Streptomycin, a specific inhibitor of chloroplast protein synthesis and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthetic CO(2) fixation, inhibited the photoinduction of glycolate dehydrogenase while having no effect on the photoinduction of NADP dependent glyceraldehyde-3-phosphate dehydrogenase, another light induced, nuclear coded, cytoplasmically synthesized enzyme. Taken together, these results suggest that microbodies are continually synthesized in resting Euglena and their enzyme complement is determined through substrate induction of glyoxysomal and peroxisomal enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.