Abstract

Provision of dietary amino acids increases skeletal muscle protein synthesis (MPS), an effect that is enhanced by prior resistance exercise. As a fundamentally necessary process in the enhancement of muscle mass, strategies to enhance rates of MPS would be beneficial in the development of interventions aimed at increasing skeletal muscle mass particularly when combined with chronic resistance exercise. The purpose of this review article is to provide an update on current findings regarding the nutritional regulation of MPS and highlight nutrition based strategies that may serve to maximize skeletal muscle protein anabolism with resistance exercise. Such factors include timing of protein intake, dietary protein type, the role of leucine as a key anabolic amino acid, and the impact of other macronutrients (i.e. carbohydrate) on the regulation of MPS after resistance exercise. We contend that nutritional strategies that serve to maximally stimulate MPS may be useful in the development of nutrition and exercise based interventions aimed at enhancing skeletal muscle mass which may be of interest to elderly populations and to athletes.

Highlights

  • The synergistic effects of amino acid provision and resistance exercise on skeletal muscle protein synthesis rates (MPS) are well described

  • Future research should examine if there are age-related differences in the ability of resistance exercise to convey an enhanced sensitivity of MPS to protein ingestion when consumed ~24 h after exercise, and whether this effect is influenced by the type of protein consumed as these results would be relevant to increasing our understanding of the factors involved in age-related muscle loss

  • Nutritional interventions designed to maximally stimulate MPS may be useful for those individuals concerned with enhancing skeletal muscle protein accretion, when they are combined with a program of chronic resistance exercise

Read more

Summary

Introduction

The synergistic effects of amino acid provision and resistance exercise on skeletal muscle protein synthesis rates (MPS) are well described (for reviews see: [1,2]). Consistent with our previous findings in young subjects [8] we reported greater increases in blood leucine concentration and increases in both rested and post-exercise MPS after ingestion of 20 g of whey protein isolate than ingestion of micellar casein This data corroborates our previous work showing that a rapid rate of amino acid appearance in the blood after feeding enhances MPS and anabolic cell-signaling after resistance exercise more than a slow rate of amino acid appearance [53], supporting the notion that protein digestion and absorption rate represents an important factor in the nutritional regulation of MPS in humans [8,47,51,52,54,55].

Conclusions
Findings
72. Doherty TJ: Invited review
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.