Abstract

The efficiency of milk production in pasture-based systems is heavily influenced by calving pattern, necessitating excellent reproductive performance in a short-breeding season. Where grazed pasture is the major component of the diet, cows are underfed relative to their intake potential. The cow responds by reducing milk output, but fertility is generally better than high intake confinement systems that achieve greater milk production per cow. A number of studies have identified body condition score (BCS) measurements that are related to likelihood of both submission and conception. Blood metabolites and metabolic hormones linked to fertility outcomes are now well characterized. In general, fertility variables have favourable associations with circulating concentrations of glucose, insulin and IGF-1 and unfavourable associations with non-esterified fatty acids, β-hydroxybutyrate and endogenous growth hormone. Nutritional strategies to impact these metabolic indicators have been utilized, but effects on herd fertility are inconsistent. Simply supplementing cows with additional energy in the form of standard concentrates does not appear to have a pronounced effect on fertility. Energy from additional concentrates fed during lactation is preferentially partitioned towards extra milk production rather than BCS repletion. The higher the genetic merit for milk production, the greater the partitioning of additional nutrients to the mammary gland. This review outlines the unique nutritional challenges of pasture-based systems, the role of specific metabolic hormones and metabolites in regulating reproductive function, and nutritional strategies to improve herd fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.