Abstract

There is evidence suggesting that oxidative stress contributes to kainate neurotoxicity. Since iron promotes oxidative stress, the present study explores how change in nutritional iron content modulates kainate-induced neurotoxicity. Rats received an iron-deficient diet (ID) from 22 days of age for 4 weeks. One control group received the same diet supplemented with iron and another control group received standard rodent diet. Cellular damage after subcutaneous kainate (10 mg/kg) was assessed by silver impregnation and gliosis by staining microglia. ID reduced cellular damage in piriform and entorhinal cortex, in thalamus, and in hippocampal layers CA1-3. ID also attenuated gliosis, except in the hippocampal CA1 layer. Given involvement of zinc in hippocampal neurotransmission and in oxidative stress, we tested for a possible interaction of nutritional iron with nutritional zinc. Rats were made iron-deficient and then assigned to supplementation with iron, zinc, or iron + zinc. Controls were continued on ID diet. After 2 weeks, rats were treated with kainate. Iron supplementation abolished the protective effect of ID in piriform and entorhinal cortex. In hippocampal CA1 and dorsal thalamus, neither iron nor zinc supplementation alone abolished the protective effect of ID against cellular damage. Iron + zinc supplementation abolished ID protection in dorsal thalamus, but not in reuniens nucleus. Kainate-induced gliosis in CA1 remained unaffected by nutritional treatments. Thus, in piriform and entorhinal cortex, nutritional iron has a major impact on cellular damage and gliosis. In hippocampal CA1, gliosis may associate with synaptic plasticity not modulated by nutritional iron, while cellular damage is sensitive to nutritional iron and zinc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.