Abstract

BackgroundThe relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.MethodParticipants were children ages 5-16 years in Arizona with Autistic Spectrum Disorder (n = 55) compared with non-sibling, neurotypical controls (n = 44) of similar age, gender and geographical distribution. Neither group had taken any vitamin/mineral supplements in the two months prior to sample collection. Autism severity was assessed using the Pervasive Development Disorder Behavior Inventory (PDD-BI), Autism Treatment Evaluation Checklist (ATEC), and Severity of Autism Scale (SAS). Study measurements included: vitamins, biomarkers of vitamin status, minerals, plasma amino acids, plasma glutathione, and biomarkers of oxidative stress, methylation, sulfation and energy production.ResultsBiomarkers of children with autism compared to those of controls using a t-test or Wilcoxon test found the following statistically significant differences (p < 0.001): Low levels of biotin, plasma glutathione, RBC SAM, plasma uridine, plasma ATP, RBC NADH, RBC NADPH, plasma sulfate (free and total), and plasma tryptophan; also high levels of oxidative stress markers and plasma glutamate. Levels of biomarkers for the neurotypical controls were in good agreement with accessed published reference ranges. In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges.A stepwise, multiple linear regression analysis demonstrated significant associations between several groups of biomarkers with all three autism severity scales, including vitamins (adjusted R2 of 0.25-0.57), minerals (adj. R2 of 0.22-0.38), and plasma amino acids (adj. R2 of 0.22-0.39).ConclusionThe autism group had many statistically significant differences in their nutritional and metabolic status, including biomarkers indicative of vitamin insufficiency, increased oxidative stress, reduced capacity for energy transport, sulfation and detoxification. Several of the biomarker groups were significantly associated with variations in the severity of autism. These nutritional and metabolic differences are generally in agreement with other published results and are likely amenable to nutritional supplementation. Research investigating treatment and its relationship to the co-morbidities and etiology of autism is warranted.

Highlights

  • The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus

  • In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges

  • The purpose of this study is to investigate the nutritional and metabolic status of children with autism compared to neurotypical children of similar age and gender, and to determine if some nutritional and metabolic biomarkers may be associated with the severity of autism

Read more

Summary

Introduction

The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. There have been several studies of the nutritional and metabolic status of children with autism, but each focused on study of only a few biomarkers. Three studies have demonstrated that children with autism have impaired methylation, decreased glutathione, and oxidative stress [8,9,10], and those studies demonstrated that nutritional supplementation (with vitamin methyl-B12, folinic acid, and trimethylglycine) is beneficial. One study in Romania found normal levels of vitamin B12 and folate in children with autism compared to controls, but low levels of plasma glutathione [11]. One study [16] found that children with autism had high levels of plasma vitamin B6 pre-supplementation, and this finding was confirmed in a follow-up study [17], suggesting a metabolic imbalance in B6. One study in Slovakia found that children with autism had significantly higher levels of vitamin C and beta-carotene, but normal levels of vitamin A and vitamin E, compared to older teen controls [20]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.