Abstract

Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypothesized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was not associated with higher bacterial diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.