Abstract
The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption. Various factors, including sorption capacity, time of contact, ion levels, a decrease in ion levels over time, and sorption kinetics, have been considered, along with their appropriateness for respective models. The first evaluation of the options concluded that 600 °C char was better since it exhibited higher removal efficiency. Modified char sorption data at 600 °C was used to adjust the models “PSOM, Langmuir”, and “Thomas”. The models were applied to both batch and bed-column experiments. The maximum phosphate sorption was 110.8 mg/g, 85.73 mg/g, and 82.46 mg/g for B-GO, B-S, and B-C modified chars respectively, in the batch experiments. The highest phosphate sorption in column experiments, at a flow rate of 400 μl/min, was 51.23 mg per 10 g of sorbent. This corresponds to a sorption rate of 5.123 mg/g. B-GO and B-S modified chars showed higher sorption capacities; this was observed in both the batch and bed-column studies. This displayed the capability of graphene oxide and struvite-modified chars for efficient ion and nutrient uptake, whether in single or multi-ion environments, making them a very good candidate for nutrient filtration in livestock wastewater treatment. Additionally, B-GO char enhanced the sorption of phosphate, resulting in augmented seed germination and seedling growth. These results reveal that B-GO char can be used as a possible substitute for chemical fertilizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.