Abstract

Stormwater runoff of nutrients from developed landscapes is recognized as a major threat to water quality degradation through cultural eutrophication, which can lead to ecosystem imbalances and harmful algal growth. This review summarizes the current state-of-knowledge on the occurrence, sources, and transport processes of nitrogen (N) and phosphorus (P) in urban stormwater runoff and describes strategies for nutrient management of urban stormwater runoff. Future research needs identified from this review are provided as well. Stormwater runoff of nutrients from urban environments to fresh water is controlled by multiple factors, including type of inputs, land use, development patterns, and management strategies. Recent research on stormwater management strategies has focused on internal nutrient cycling processes, such as microbial transformations of N in conventional wet ponds or bioretention cells, leading to a better understanding of the mechanisms that control the efficacy of stormwater management practices. Mitigating nutrient exports from urban environments will require controlling both quantities and sources of nutrient inputs into water systems, as well as new mechanistic understanding of the biogeochemical processes controlling nutrient treatment in stormwater ponds and low impact design (LID) structures. We need more research on source tracking of P from stormwater runoff as information is still relatively scarce. There is also a need to obtain better understanding of the dynamic interactions among multiple factors (e.g., sources, land use, characteristic of catchment and climate, management strategies) that control fate and transport of nutrients in urban stormwater runoff.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call