Abstract

Nutrient transport in mycorrhizas occurs across specialized interfaces which are the result of corrdinated development of the organisms. The structural modifications give rise to large areas of either inter- or intra-cellular interface in which wall synthesis is frequently modified and in which altered distribution of membrane bound ATPases is important, particularly with respect to mechanisms that may be involved in bidirectional transfer of nutrients. Except in orchid mycorrhizas, net movement of organic carbon from plant to fungus occurs, complemented by mineral nutrient movement in the opposite direction. The general consensus is that sustained transfer at rates that will maintain the growth and development of the organisms requires increases in the rates at which nutrients are lost from the organisms; possible mechanisms for this are discussed. The transfer processes are essential in determining both plant and fungal productivity and an approach to calculating the efficiency of the symbiosis in terms of the expenditure of carbon (or of phosphorus) is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call