Abstract
With the anticipated application of engineered nanomaterials (ENMs) as foliar fertilizers in agriculture, there is a particular need to accurately assess crop intensification capacity, potential hazards, and effects on the soil environment when ENMs are applied alone or in combination. In this study, the joint analysis of scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) showed that ZnO NPs transformed on the leaf surface or within the leaf, and Fe3O4 NPs were able to translocate from the leaf (~ 25 memu/g) into the stem (~ 4 memu/g), but were unable to enter the grain (below 1 memu/g), guaranteeing food safety. Spray application of ZnO NPs significantly improved grain Zn content of wheat (40.34 mg/kg), whereas Fe3O4 NPs treatment and Zn + Fe NPs treatment did not significantly improve grain Fe content. According to the micro X-ray fluorescence of wheat grains(μ- XRF) and physiological structure in situ analysis showed that ZnO NPs treatment and Fe3O4 NPs treatment could increase the elemental contents of Zn and Fe in the crease tissue and endosperm components, respectively, while antagonism was observed in the grain treated with Zn + Fe NPs. The 16S rRNA gene sequencing results showed that the Fe3O4 NPs treatment had the greatest negative effect on soil bacterial community, followed by Zn + Fe NPs, and ZnO NPs showed some promotion effect. This may be caused by the significantly higher elemental contents of Zn/Fe in the treated roots and soils. This study critically evaluates the application potential and environmental risks of nanomaterials as foliar fertilizers and is instructive for agricultural applications of nanomaterials alone and in combination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.