Abstract
AbstractThe processes by which bacteria proactively scavenge essential nutrients in crowded environments such as the gastrointestinal tract are not fully understood. In this context, we observed that bacterial extracellular vesicles (BEVs) produced by the human commensal gut microbe Bacteroides thetaiotaomicron contain multiple high‐affinity vitamin B12 binding proteins suggesting that the vesicles play a role in micronutrient scavenging. Vitamin B12 belongs to the cobamide family of cofactors that regulate microbial communities through their limited bioavailability. We show that B. thetaiotaomicron derived BEVs bind a variety of cobamides and not only deliver them back to the parental bacterium but also sequester the micronutrient from competing bacteria. Additionally, Caco‐2 cells, representing a model intestinal epithelial barrier, acquire cobamide‐bound vesicles and traffic them to lysosomes, thereby mimicking the physiological cobalamin‐specific intrinsic factor‐mediated uptake process. Our findings identify a novel cobamide binding activity associated with BEVs with far‐reaching implications for microbiota and host health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Extracellular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.