Abstract

The ability of the gut to detect nutrients is critical to the regulation of gut hormone secretion, food intake, and postprandial blood glucose control. Ingested nutrients are detected by specific gut chemosensors. However, knowledge of these chemosensors has primarily been derived from the intestine, while available information on gastric chemosensors is limited. This study aimed to investigate the nutrient-sensing repertoire of the mouse stomach with particular emphasis on ghrelin cells. Quantitative RT-PCR was used to determine mRNA levels of nutrient chemosensors (protein: G protein-coupled receptor 93 [GPR93], calcium-sensing receptor [CaSR], metabotropic glutamate receptor type 4 [mGluR4]; fatty acids: CD36, FFAR2&4; sweet/umami taste: T1R3), taste transduction components (TRPM5, GNAT2&3), and ghrelin and ghrelin-processing enzymes (PC1/3, ghrelin O-acyltransferase [GOAT]) in the gastric corpus and antrum of adult male C57BL/6 mice. Immunohistochemistry was performed to assess protein expression of chemosensors (GPR93, T1R3, CD36, and FFAR4) and their co-localization with ghrelin. Most nutrient chemosensors had higher mRNA levels in the antrum compared to the corpus, except for CD36, GNAT2, ghrelin, and GOAT. Similar regional distribution was observed at the protein level. At least 60% of ghrelin-positive cells expressed T1R3 and FFAR4, and over 80% expressed GPR93 and CD36. The cellular mechanisms for the detection of nutrients are expressed in a region-specific manner in the mouse stomach and gastric ghrelin cells. These gastric nutrient chemosensors may play a role modulating gastrointestinal responses, such as the inhibition of ghrelin secretion following food intake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.