Abstract

Some aquatic systems have disproportionately high nutrient processing rates, and may be important to nutrient retention within river networks. However, the contribution of such biogeochemical hot spots also depends on water residence time and hydrologic connections within the system. We examined the balance of these factors in a comparative study of nitrate (NO3−) uptake across stream and flow-through wetland reaches of northern Wisconsin, USA. The experimental design compared NO3− uptake at different levels: the ecosystem level, for reaches (n = 9) consisting of morphologically contrasting subreaches (SLOW, low mean water velocity; REF, reference, or higher mean water velocity); the sub-ecosystem level, for subreaches consisting of morphologically contrasting zones (TS, transient storage zone; MC, main channel zone). SLOW subreaches had 45% lower ecosystem-level uptake rate (K, t−1) on average, indicating reduced uptake efficiency in flow-through wetlands relative to streams. The four largest K values (total n = 24) also occurred in REF subreaches. TS:MC uptake rate varied (range 0.1–6.0), but MC zones consistently accounted for most NO3− uptake by the ecosystem. In turn, TS influence was limited by a tradeoff between TS zone uptake rate and the strength of TS–MC hydrologic connection (α or Fmed). Additional modeling of published hydrologic parameter sets showed that strong MC dominance of uptake (>75% of total uptake), at the scale of solute release methods (meters to kilometers, hours to days), is common among streams and rivers. Our results emphasize that aquatic nutrient retention is the outcome of a balance involving nutrient uptake efficiency, water residence time, and the strength of hydrologic connections between nutrient sources and sinks. This balance restricts the influence of hydrologically disconnected biota on nutrient transport, and could apply to diverse ecosystem types and sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.