Abstract

Abstract The European Union (EU) has implemented effluent (emission) standards since 1991, while North America practices a riskbased, imission approach. Progressing eutrophication and large fees for discharged loads push EU countries toward more stringent effluent concentrations, below total nitrogen (TN) levels of 10 mg/L and total phosphorus (TP) levels of 1 mg/L. In North America, the limit of treatment technology (LOT) concept has been defined as the lowest economically achievable effluent quality, which for TN is <1.5 to 3 mg/L and TP is <0.07 mg/L. These limits are becoming targets in fragile ecoregions in North America and drive the technology solutions towards a combination of advanced biological nutrient removal process trains, followed by chemical polishing and solids separation by granular or cloth filters or membranes. In Western Canada one-biomass biological nutrient removal processes are used, such as Westbank or Step-feed, often followed by filtration to achieve low effluent total phosphorus levels. Eastern Canada has a less stringent approach to nitrogen control and practices chemical phosphorus removal. Requirement for total nitrogen removal and rising costs of phosphorus precipitation drive designers towards advanced one-biomass processes and full utilization of carbon (for denitrification and phosphorus removal) available in raw wastewater and primary sludge. New processes are developed to take advantage of carbon available in waste activated sludge or even in the recycled activated sludge. Sludge treatment return streams have high nutrient loads and novel processes are introduced for their treatment, some utilizing generated nitrifier biomass for bio-augmentation of the main stream nitrification process. The impact of sludge processing on the liquid train and vice versa is now fully embedded in the design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.