Abstract
Nutrient removal is essential for aquaculture wastewater treatment to protect receiving waters from eutrophication and for potential reuse of the treated water. A pilot-scale wastewater treatment system consisting of a free water surface (FWS) and a subsurface flow (SSF) constructed wetlands arranged in series was operated for around 8 months. The study was conducted to examine system start-up phenomena and to evaluate system performance in removing inorganic nitrogen and phosphate from aquaculture wastewater under various hydraulic loading rates (1.8 to 13.5 cm day −1). The wetlands system showed rapid start-up behaviors in which process stabilities were achieved in the following sequence: phosphate removal in the SSF without an adaptation period, nitrogen removal in the SSF after 1 month, nitrogen removal in the FWS after 2 to 3 months, phosphate removal in the FWS after 3 months, and vegetation cover in both wetlands after 7 months of operation. Nitrogen removals were excellent, with efficiencies of 86% to 98% for ammonium nitrogen (NH 4–N) and 95% to 98% for total inorganic nitrogen (TIN). Removal efficiencies were affected little by the hydraulic loading trials. Phosphate removal of 32% to 71% occurred, with the efficiencies being inversely related to hydraulic loading. The FWS wetland removed most inorganic nitrogen, whereas the SSF wetland removed phosphate at a rate equal to or even greater than the FWS. Removal of ammonium and nitrite (effluent concentrations <0.3 mg NH 4–N l −1 and 0.01 mg NO 2–N l −1) were sufficient for recycle in the aquaculture system without danger of harming the fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.