Abstract

Urine has been considered as an ideal nutrient source for microalgae cultivation thanks to its composition containing the high concentrations of nitrogen and phosphorus. Herein, the microalgae growth in urine was evaluated in a lab-scale membrane photobioreactor (MPBR) system. This work aimed to validate the influence of low biomass retention times (BRT) (10, 7, 5, 3, 2 d) on nutrient remediation and biomass productivity. It revealed that BRT of 7 d resulted in synergistically high biomass production (biomass productivity of 313 mg/L.d) and removal rates (TN of 90.5 mg/L.d and TP of 4.7 mg/L.d). Notably, the short BRT of 2–5 d was not sufficient to trigger actively growing microalgae and thus reduced biomass production rate. In addition, as operated at a low flux of 2 L/m2.h, MPBR system required no physical cleaning for 100 days of operation. The BRT-dependent biomass concentration played a pivotal role in changing the fouling rate of MPBR; however, the fouling is reversible in the MPBR system under the low flux condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call