Abstract

Oocyte maturation is defined as that phase of development whereby a fully grown oocyte reinitiates meiotic maturation, completes one meiotic division with extrusion of a polar body, then arrests at MII until fertilisation. Completion of maturation depends on many different factors, not the least of which is the proper provision of energy substrates to fuel the process. Interaction of the oocyte and somatic compartment of the follicle is critical and involves numerous signals exchanged between the two cell types in both directions. One of the prominent functions of the cumulus cells is the channelling of metabolites and nutrients to the oocyte to help stimulate germinal vesicle breakdown and direct development to MII. This entails the careful integration and coordination of numerous metabolic pathways, as well as oocyte paracrine signals that direct certain aspects of cumulus cell metabolism. These forces collaborate to produce a mature oocyte that, along with accompanying physiological changes called cytoplasmic maturation, which impart subsequent developmental competence to the oocyte, can be fertilised and develop to term. This review focuses on nuclear maturation and the metabolic interplay that regulates it, with special emphasis on data generated in the mouse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.