Abstract

The present study demonstrates a process engineering strategy to achieve high butanol titer and productivity from wild type Clostridium acetobutylicum MTCC 11274. In the first step, two different media were optimized with the objectives of maximizing the biomass and butanol productivity, respectively. In the next step, attributes of these two media compositions were integrated to design a two-stage fed-batch process which resulted in maximal butanol productivity of 0.55 g L-1 h-1 with titer of 13.1 g L-1 . Further, two-stage fed-batch process along with combinatorial use of magnesium limitation and calcium supplementation resulted in the highest butanol titer and productivity of 16.5 g L-1 and 0.59 g L-1 h-1 , respectively. Finally, integration of the process with gas stripping and modulation of feeding duration resulted in a cumulative butanol titer of 54.3 g L-1 and productivity of 0.58 g L-1 h-1 . The strategy opens up possibility of developing a viable butanol bioprocess. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2771, 2019.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.