Abstract
Traditional antibacterial screens rely on growing bacteria in nutrient-replete conditions which are not representative of the natural environment or sites of infection. Instead, screening in more physiologically relevant conditions may reveal novel activity for existing antibiotics. Here, we screened a panel of antibiotics reported to lack activity against the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa, under low-nutrient and low-iron conditions, and discovered that the glycopeptide vancomycin inhibited the growth of P. aeruginosa at low micromolar concentrations through its canonical mechanism of action, disruption of peptidoglycan crosslinking. Spontaneous vancomycin-resistant mutants underwent activating mutations in the sensor kinase of the two-component CpxSR system, which induced cross-resistance to almost all classes of β-lactams, including the siderophore antibiotic cefiderocol. Other mutations that conferred vancomycin resistance mapped to WapR, an α-1,3-rhamnosyltransferase involved in lipopolysaccharide core biosynthesis. A WapR P164T mutant had a modified LPS profile compared to wild type that was accompanied by increased susceptibility to select bacteriophages. We conclude that screening in nutrient-limited conditions can reveal novel activity for existing antibiotics and lead to discovery of new and impactful resistance mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.