Abstract

Understanding the roles of nutrient restriction in extracellular electron transfer (EET) and stability of mixed electroactive biofilm is essential in pollutant degradation and bioenergy production. However, the relevant studies are still limited so far. Herein, the effect of nutrient restriction on the EET pathways and stability of mixed electroactive biofilm was explored. It was found that the electroactive Pseudomonas and Geobacter genera were selectively enriched in the biofilms cultured under total nutrient and P-constrained conditions, and two EET pathways including direct and indirect were found, while Rhodopseudomonas genus was enriched in the N-constrained biofilm, which only had the direct EET pathway. Moreover, multiple analyses including 2D confocal Raman spectra revealed that P-constrained biofilm was rich in extracellular polymeric substances (EPS) especially for polysaccharide, presented a dense and uniform layered distribution, and had better stability than N-constrained biofilm with lower EPS and biofilm with heterostructures cultured under total nutrient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call