Abstract

A laboratory-scale compost-based biofilter was operated over a six-month period to study the requirements for removal of n-hexane from air. Hexane is a relatively short chain aliphatic hydrocarbon with a high Henry's coefficient and a low water solubility. Acclimation of the biofilter was slow, but removal efficiencies around 80% were achieved after one month of operation. However, performance decreased during the next two months of operation to 50% removal efficiency. Nutrient limitation was proposed as a reason for the decrease in reactor performance. After the addition of a concentrated nitrogen solution, reactor performance increased almost immediately to >99%. Removal efficiency remained above 99% for the following two months of operation at inlet concentrations of 0.7 g/m3 (200 ppmv), at superficial bed velocities approaching 50 m/h, and empty bed residence times of about one minute. Thus, nutrient availability may well limit biofilter performance even in compost- based units. It was shown that nutrients can be added effectively in a soluble form if compost quality is poor and a method is proposed for the evaluation of compost quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.