Abstract

Nutrient pollution of aquatic ecosystems is a growing concern as the influence of human activities continues to increase on the landscape. Headwater streams have long been shown to process nutrients via the biofilm community growing on the bottom of streams. The growth and activity of these biofilms is often limited by the availability of nitrogen (N), phosphorus (P), or co-limited by both N and P. Although small stream nutrient dynamics are relatively well understood, comparatively little is known about larger, non-wadeable rivers. Biofilms on the river bottom are likely still nutrient limited, but there becomes an increased potential for light limitation as rivers increase in depth. In addition to biofilms on the bottom of rivers, free-living microbial communities suspended in the water column also occur in rivers and process nutrients - a component of nutrient processing largely ignored in streams. In summer 2013 we worked in streams and rivers of the Greater Yellowstone Area (GYA) to establish the nutrient limitation status of minimally-impacted rivers, as well as the role of the water column in processing nutrients as streams increase in size. For both the nutrient limitation and water column uptake studies, we are using the GYA sites in addition to systems from other regions of the US to establish what controls the various aspects of nutrient dynamics in rivers. Our results from the GYA, in addition to Midwest and Southwest US rivers, will provide water quality managers with new strategies for improving water quality downstream, and clarify mechanisms controlling nutrient retention in rivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.