Abstract

Anadromous and semelparous salmon transport nutrients from the ocean to fresh waters when they return to spawn and die, a process inspiring a large body of research on the role of salmon-derived nutrients in coastal ecosystems. However, salmon also transport nutrients out of fresh waters when they migrate to the ocean as smolts. Using a total of 76 years of age-specific smolt-migration and adult-escapement data, we calculated the amounts of nitrogen and phosphorus that sockeye salmon (Oncorhynchus nerka) imported and exported from four major systems in Bristol Bay, Alaska. Smolts removed an average of 16% of the phosphorus and 12% of the nitrogen that their parents transported into fresh waters. The percentage of parental nutrients that smolts exported varied through time and among sites, ranging from 1% to 65% of the phosphorus and from less than 1% to 47% of the nitrogen. In systems where smolts were larger, they exported a higher percentage of nutrients. Depending on the strength of density-dependence, smolts could theoretically export more nutrients than their parents import to freshwater ecosystems at low spawning densities. Ignoring nutrient export by outgoing smolts will consistently lead to overestimation of nutrient import by Pacific salmon to freshwater ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call